A developmental timing microRNA and its target regulate life span in C. elegans.

نویسندگان

  • Michelle Boehm
  • Frank Slack
چکیده

The microRNA lin-4 and its target, the putative transcription factor lin-14, control the timing of larval development in Caenorhabditis elegans. Here, we report that lin-4 and lin-14 also regulate life span in the adult. Reducing the activity of lin-4 shortened life span and accelerated tissue aging, whereas overexpressing lin-4 or reducing the activity of lin-14 extended life span. Lifespan extension conferred by a reduction in lin-14 was dependent on the DAF-16 and HSF-1 transcription factors, suggesting that the lin-4-lin-14 pair affects life span through the insulin/insulin-like growth factor-1 pathway. This work reveals a role for microRNAs and developmental timing genes in life-span regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MIR-237 is Likely a Developmental Timing Gene that Regulates the L2-to-L3 Transition in C. Elegans

MIR-237 IS LIKELY A DEVELOPMENTAL TIMING GENE THAT REGULATES THE L2-TO-L3 TRANSITION IN C. ELEGANS Xi Li, B.S. Marquette University, 2010 Development is regulated in both the spatial and temporal dimensions. The developmental timing pathway in C. elegans is the most extensively studied timing mechanism. Many components of the pathway are conserved across phyla. Postembryonic development of C. e...

متن کامل

The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans.

The microRNA let-7 is a critical regulator of developmental timing events at the larval-to-adult transition in C. elegans. Recently, microRNAs with sequence similarity to let-7 have been identified. We find that doubly mutant animals lacking the let-7 family microRNA genes mir-48 and mir-84 exhibit retarded molting behavior and retarded adult gene expression in the hypodermis. Triply mutant ani...

متن کامل

Effect of life history on microRNA expression during C. elegans development.

Animals have evolved mechanisms to ensure the robustness of developmental outcomes to changing environments. MicroRNA expression may contribute to developmental robustness because microRNAs are key post-transcriptional regulators of developmental gene expression and can affect the expression of multiple target genes. Caenorhabditis elegans provides an excellent model to study developmental resp...

متن کامل

The GATA Factor elt-1 Regulates C. elegans Developmental Timing by Promoting Expression of the let-7 Family MicroRNAs

Postembryonic development in Caenorhabditis elegans is a powerful model for the study of the temporal regulation of development and for the roles of microRNAs in controlling gene expression. Stable switch-like changes in gene expression occur during development as stage-specific microRNAs are expressed and subsequently down-regulate other stage-specific factors, driving developmental progressio...

متن کامل

Multiple sensory G proteins in the olfactory, gustatory and nociceptive neurons modulate longevity in Caenorhabditis elegans.

The life span of the nematode Caenorhabditis elegans is under control of sensory signals detected by the amphid neurons. In these neurons, C. elegans expresses at least 13 Galpha subunits and a Ggamma subunit, which are involved in the transduction and modulation of sensory signals. Here, we show that loss-of-function mutations in the Galpha subunits odr-3, gpa-1 and gpa-9, in the Ggamma subuni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 310 5756  شماره 

صفحات  -

تاریخ انتشار 2005